OMI OPERATIONS STATUS

Jacques Claas
Instrument Operations Team
KNMI
The Netherlands

MOWG
12 September 2006
Boulder

Content of Presentation

- Folding Mirror Mechanism (FMM) anomaly
- Operations status and outlook

FMM anomaly: purpose of FMM

The FMM is a stepper motor. It is needed when performing calibration measurements

Design drawing of the OMI optical bench

FMM anomaly: overview

- On Feb 28th at 00:23:18 GMT OMI stopped generating science data due to a FMM anomaly.
- Investigation started immediately after the occurrence of the anomaly.
 Parties involved:
 - Instrument Operations Team
 - Industry (Dutch Space and TNO-TPD)
 - NASA / AURA Flight Operations Team Decisions were formalized by means of Non-Conformance Review Boards.
- OMI resumed generating science data on March 3rd (only earth and dark measurements, no calibration measurements).
- As part of the anomaly investigation 13 FMM tests were carried out in the period March 8th – May 17th.
- Although the FMM tests provided detailed information on the in-flight FMM behaviour, the FMM behaved nominally during all tests and no root cause could be found for the anomaly.
- On June 12th OMI resumed full nominal operations generating earth science data as well as calibration data.

FMM anomaly: operating the FMM

- For calibration measurements:
 - assume an unknown initial FMM position.
 - move the FMM from this unknown position to calibration position 0 by commanding 85 steps.
 - in case the FMM bounces against the endstop, indicated by a dark status of the opto-coupler, move the FMM 4 additional steps from position 4 to position 0.
 - when the calibration measurement is finished, move the FMM to the nadir position 79.
- For nadir (earth) measurements:
 - not needed to move the FMM, because the default position is the nadir position.

Operations Overview

FMM anomaly: what went wrong?

- Till Feb 19th the FMM always bounced against the calibration endstop when moving to the calibration position.
- Between Feb 19th and Feb 28th the FMM not always bounced.
- On Feb 28th, when moving the FMM into calibration position for a LED calibration measurement, the optocoupler status remained "dark" even after the 4 additional steps.
- Automatically a Fault Management procedure started, resulting in a transition to Idle mode which effectively stopped the generation of science data.
- As part of the Fault Management procedure, the FMM was moved to nadir position.

Operations Overview

FMM anomaly: telemetry analysis

- Telemetry analysis showed that the FMM, as part of the Fault Management procedure, was indeed moved to nadir position.
- This was confirmed when, after March 3rd, earth images became available again which showed that the optical path was not blocked by the FMM.

Operations Overview

FMM anomaly: testing the FMM

Folding Mirror Mechanism: NADIR endposition: FLU STATE: 1 3 2 3 81 76 75 73 Step: Opto coupler LIT Clock Wise End stop 'NADIR': CALIBRATION endposition: Ref. position ELU STATE: 2 2 3 0 Step: Opto coupler LIT Counter Clock Wise

Purpose of various tests:

- Tests 1-3:
 Find out if the FMM can be moved around its nadir position?
- Tests 4-5:
 Find out if the redundant FMM coils can be used, also in combination with the nominal FMM coils (double drive torque!)
- Find out if the FMM can be moved from the nadir position 79 to position 2 without loosing steps in between due to mechanical/electrical wear
- Tests 9-10:
 Find out if there is mechanical/electrical wear or opto-coupler problem at position 1.
- Tests 11 (without WLS) 12 (with WLS):
 Find out if there is mechanical/electrical wear or opto-coupler problem at position 0; find out if bouncing is taking place.
- Test 13 (with WLS):
 Find out the precise position of the calibration endstop by commanding FMM to virtual position -4;
 find out when FMM jumps back.

Operations Overview

Jacques Claas

End stop

FMM anomaly: test results

- All tests were successful.
- During all tests the FMM showed nominal behaviour.
- There is no loss of steps when moving the FMM from nadir position to calibration position and vice versa.
- There is no indication for an opto-coupler problem.
- No bouncing against the calibration endstop takes place when commanding the FMM step-by-step.
- When using the WLS, the WLS signal is highest at FMM position 1 whereas position 0 (the calibration position) was expected.
- It turns out that the FMM position during a calibration measurement is just in front of the calibration endstop and not at the calibration endstop.
- A known initial position 79 can be assumed when starting to use the FMM.

FMM anomaly: cause and corrective action

Cause:

- Despite all the successful tests, the root cause for the FMM anomaly has not been found.
- One possible cause (although it cannot be proven) is that, instead with the usual 4 steps, the FMM bounced 8 steps when moving to the calibration position. This has occurred only once during an on-ground test.

Corrective action:

- A relation is assumed between the changing bouncing behaviour as observed between Feb 19th and Feb 28th and the FMM anomaly on Feb 28th.
- By operating the FMM in a different way, bouncing against the calibration endstop can be avoided.
- All calibration measurements are performed by means of Stored Instruction Sequences (SISs). All SISs that use the FMM will be modified to avoid bouncing.
- In the next coming months old SISs will be replaced by new SISs.
- Replacing the old SISs by the new SISs will have no impact on the measurement schedule.
- The FMM is now continuously monitored by automated TM checking

Operations Status and Outlook

- OMI performs nominal
- OMI is taking both earth and calibration measurements according to the (unchanged) Nominal Operations Baseline.
- On June 17th a new LED linearity measurement was performed for the first time giving more detailed information on the non-linear relation ship between the incoming flux on the CCD and the resulting number of electrons in the CCD read-out register.
- All calibration SISs that use the FMM will be updated to avoid bouncing of the FMM.
- 29 new orbit-type activities have been developed that enable a more flexible timing of the earth measurements during the ozone hole season. This is to avoid CCD saturation in the UV spectral region.
- Except for the FMM anomaly there have been no other instrument anomalies.
- OMI is thermally still very stable. No change of thermal settings needed.

Current OMIS IOT team members

KNMI

Jacques Claas

Mirna van Hoek

Dutch Space

Leo van Lent

Northrop Grumman

Ayman Mekhail

Available 24/7

Joe Purcell

Operations Overview

Position calibration end-stop (result from FMM test #13)

Operations Overview

Ozone Hole 2006 Aug 21 – Sep 9

